Introduction to Mathematics with Proofs

Yufei Cui

yufei_cui@hotmail.com

May 4, 2021

★ Ξ →

2 Mathematical Sets (not Python!)

イロト イヨト イヨト イヨト

Show enough evidence until it becomes abundantly clear.

イロト イヨト イヨト イヨト

- **1** Show enough evidence until it becomes abundantly clear.
- 2 Argue until one side gives up.

(日) (四) (日) (日) (日)

- **1** Show enough evidence until it becomes abundantly clear.
- Argue until one side gives up.
- Show that it...is true...? ????

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- **1** Show enough evidence until it becomes abundantly clear.
- Argue until one side gives up.
- Show that it...is true...? ????
- Because my parents said it's true! No, you SUCK!

A (1) > A (2) > A

• Rigorous... but what does that mean?

イロト イヨト イヨト イヨト

- Rigorous... but what does that mean?
- It is a sequence of logical reasonings, each of which is irrefutably true which leads to your final conclusion.

→ Ξ →

- Rigorous... but what does that mean?
- It is a sequence of logical reasonings, each of which is irrefutably true which leads to your final conclusion.
- It is **not** a science. A proof is not a demonstration that can be repeated.

★ Ξ →

- Rigorous... but what does that mean?
- It is a sequence of logical reasonings, each of which is irrefutably true which leads to your final conclusion.
- It is **not** a science. A proof is not a demonstration that can be repeated.
- Proofs leverage facts or things we reasonably assume to be true to make conclusions about more facts...

- Rigorous... but what does that mean?
- It is a sequence of logical reasonings, each of which is irrefutably true which leads to your final conclusion.
- It is **not** a science. A proof is not a demonstration that can be repeated.
- Proofs leverage facts or things we reasonably assume to be true to make conclusions about more facts...
- in the language of mathematics

Proofs

Example

Example

Prove that if a number is greater than 6, then it **must** be greater than 5.

Proof.

Well.. it's obvious? Proof by obviousness!

Yufei Cui

May 4, 2021 5 / 16

• • • • • • • • • • • •

Example

Example

Prove that if a number is greater than 6, then it **must** be greater than 5.

(日)

Example

Example

Prove that if a number is greater than 6, then it **must** be greater than 5.

Thinking...

I want to show that any number satisfy the "if" part, the "then" part will also be satisfied.

Example

Example

Prove that if a number is greater than 6, then it **must** be greater than 5.

Thinking...

I want to show that any number satisfy the "if" part, the "then" part will also be satisfied.

Proof.

Let x be an arbitrary number that is greater than 6.

which shows the "then" part, as wanted.

Yu	tε	21	. (.)	ш

BAD Example

Example

Prove that Yufei is the most handsome.

BAD Example

Example

Prove that Yufei is the most handsome.

Proof.

Linda looked at Yufei and compared it against other people around the room and has confirmed it.

★ ∃ ► ★

What we are proving are called "statements", which can either be "true" or "false" but not both nor neither.

- What we are proving are called "statements", which can either be "true" or "false" but not both nor neither.
- 2 We will learn techniques for proving or disproving statements.

(4) (3) (4) (4) (4)

- What we are proving are called "statements", which can either be "true" or "false" but not both nor neither.
- 2 We will learn techniques for proving or disproving statements.
- In order to do so, we need to learn some math nomenclature the building blocks of the mathematical language.

- What we are proving are called "statements", which can either be "true" or "false" but not both nor neither.
- **2** We will learn techniques for proving or disproving statements.
- In order to do so, we need to learn some math nomenclature the building blocks of the mathematical language.
- Then we will try to "communicate" in that language.

Proofs

Outline

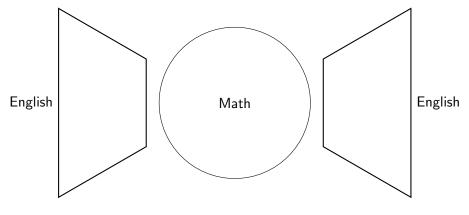


Figure: Mathematical Maturity

Yu		

May 4, 2021 9 / 16

2

Definition

A set is "collection of things"

• This is not very satisfactory...we used a different word to define our first word. But what is a collection...?

- - E

Definition

A set is "collection of things"

- This is not very satisfactory...we used a different word to define our first word. But what is a collection...?
- But for our purposes, we will accept this as it intuitively make sense.

Definition

A set is "collection of things"

Definition

A set is "collection of things"

Example

$$A = \{1, 2, 3\}$$

 $B = \{"apple", "pear", "oranges"\}$
 $C = \{ \blacklozenge, \diamondsuit, \diamondsuit, \blacktriangledown \}$

 $D = \{ all Canadians with 4 as the last digit of their SIN card \}$

We use " $\{\}$ " to denote a set and the things inside are its "members"'.

	e •	~	
- Yı	ıfei	. (п

May 4, 2021 11 / 16

< □ > < 同 > < 回 > < Ξ > < Ξ

Now that we have introduced the mathematical object of a set, we can now play around with sets.

• • • • • • • • • • • •

$$X = \{1,4,5\} \quad Y = \{4,7,10\} \quad Z = \{1,5\}$$

Symbol	Meaning	Example	
E	"an element of"	4 ∈ <i>X</i>	

$$X = \{1,4,5\} \quad Y = \{4,7,10\} \quad Z = \{1,5\}$$

Symbol	Meaning	Example
E	"an element of"	4 ∈ <i>X</i>
¢	"not an element of"	4 ∉ <i>Z</i>

$$X = \{1,4,5\} \quad Y = \{4,7,10\} \quad Z = \{1,5\}$$

Symbol	Meaning	Example
E	"an element of"	4 ∈ <i>X</i>
∉	"not an element of"	4 ∉ <i>Z</i>
⊆	"a subset of"	$Z \subseteq X$

$$X = \{1,4,5\} \quad Y = \{4,7,10\} \quad Z = \{1,5\}$$

Symbol	Meaning	Example
E	"an element of"	4 ∈ <i>X</i>
∉	"not an element of"	4 ∉ <i>Z</i>
⊆	"a subset of"	$Z \subseteq X$
⊈	"not a subset of"	$X \notin Y$

$$X = \{1,4,5\} \quad Y = \{4,7,10\} \quad Z = \{1,5\}$$

Symbol	Meaning	Example
E	"an element of"	4 ∈ <i>X</i>
∉	"not an element of"	4 ∉ <i>Z</i>
⊆	"a subset of"	$Z \subseteq X$
⊈	"not a subset of"	X⊈Y
U	"union of"	$X \cup Y = \{1,4,5,7,10\}$

$$X = \{1,4,5\} \quad Y = \{4,7,10\} \quad Z = \{1,5\}$$

Symbol	Meaning	Example
E	"an element of"	4 ∈ <i>X</i>
∉	"not an element of"	4 ∉ <i>Z</i>
⊆	"a subset of"	$Z \subseteq X$
⊈	"not a subset of"	$X \notin Y$
U	"union of"	$X \cup Y = \{1, 4, 5, 7, 10\}$
\cap	"intersection of"	$X \cap Y = \{4\}$

t ► ◀ ≣ ► ≣ ∽९९० May 4, 2021 13/16

$$X = \{1,4,5\} \quad Y = \{4,7,10\} \quad Z = \{1,5\}$$

Symbol	Meaning	Example
E	"an element of"	4 ∈ <i>X</i>
∉	"not an element of"	4 ∉ <i>Z</i>
⊆	"a subset of"	$Z \subseteq X$
⊈	"not a subset of"	$X \notin Y$
U	"union of"	$X \cup Y = \{1, 4, 5, 7, 10\}$
\cap	"intersection of"	$X \cap Y = \{4\}$
Ø	"empty set"	$Y \cap Z = \emptyset$

May 4, 2021 13 / 16

3

Natural Numbers

$\mathbb{N} = \{1, 2, 3, \cdots\}$

Natural Numbers

$$\mathbb{N} = \{1, 2, 3, \cdots\}$$

Integers

$$\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, 3, \cdots\}$$

イロト イヨト イヨト イヨト

Natural Numbers

$$\mathbb{N} = \{1, 2, 3, \cdots\}$$

Integers

$$\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, 3, \cdots\}$$

Rationals

 $\mathbb{Q} = \{ \text{all fractions} \}$

イロト イボト イヨト イヨ

Natural Numbers

$$\mathbb{N} = \{1, 2, 3, \cdots\}$$

Integers

$$\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, 3, \cdots\}$$

Rationals

 $\mathbb{Q} = \{ \text{all fractions} \}$

Real Numbers

 $\mathbb{R} = \{ all numbers with a decimal expansion \} \}$

		C	

э

< □ > < 同 > < 回 > < Ξ > < Ξ

Natural Numbers

$$\mathbb{N} = \{1, 2, 3, \cdots\}$$

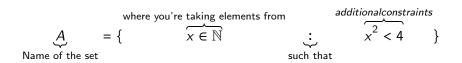
Integers

$$\mathbb{Z} = \{\cdots, -2, -1, 0, 1, 2, 3, \cdots\}$$

Rationals

 $\mathbb{Q} = \{ all \ fractions \}$

Real Numbers


 $\mathbb{R} = \{ all numbers with a decimal expansion \}$

Note:

$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$	(日)

11	e •	~	
	ıfei		

Set-Building Notation

-

• • • • • • • • • • • •

Set-Building Notation

Practice: Explicitly write the elements of

1
$$E = \{x \in \mathbb{Z} : x^2 < 4\}$$

②
$$F = \{y \in \mathbb{N} : -17 < x < 10\}$$

$$\bigcirc G = E \cap F$$

$$\bigcirc H = G \cup F$$

-

• • • • • • • • • • • •